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Abstract. We have investigated variants of interval branch-and-bound algorithms for global optim-
ization where the bisection step was substituted by the subdivision of the current, actual interval into
many subintervals in a single iteration step. The results are published in two papers, the first one
contains the theoretical investigations on the convergence properties. An extensive numerical study
indicates that multisection can substantially improve the efficiency of interval global optimization
procedures, and multisection seems to be indispensable in solving hard global optimization problems
in a reliable way.
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1. Introduction

This paper analyzes the computational efficiency of algorithms solving the uncon-
strained global optimization problem. In general, we will assume that a nonempty
bounded closedn-dimensional interval or boxX ⊂ Rn containing all global min-
imizersx∗ of the (in most cases continuous) objective functionf : Rn → R can
always be given. Considering real-life problems this means practically no restric-
tions on the type of problems considered. Keeping this argumentation in view, the
bound constrained global optimization problem has the following form:

min
x∈X f (x). (1.1)

The algorithms considered are based on interval arithmetic [7]. We shall denote
the inclusion function of the objective functionf by F : In → I, i.e., for∀Y ∈ In
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and∀y ∈ Y f (y) ∈ F(Y ), whereI stands for the set of all bounded closed real
intervals. In other words,f (Y ) ⊆ F(Y ) wheref (Y ) is the range off over Y .
The lower and upper bounds of an intervalY ∈ In are denoted by lbY and ubY ,
respectively, and the width byw(Y ):w(Y ) = maxi (ubYi − lb Yi). I(X) stands for
all Y ∈ In such thatY ⊆ X.

Much effort has been made to improve the convergence speed of interval meth-
ods for global optimization in the last few decades to enable these reliable methods
to solve real-life problems [5, 12, 13, 14]. The main part of this paper develops
further an idea [1, 2, 7], subdividing the current subproblem into many (s > 2)
smaller problems in a single step in contrast to traditional bisection, where two
new subintervals are always produced. The general algorithm can be formulated as
follows:

Step 1. LetL be an empty list, set the current boxA := X, and the iteration counter
k := 1.

Step 2. SubdivideA into a finite number of subsetsAi satisfyingA = ∪Ai so that
int(Ai)∩ int(Aj ) = ∅ for all i 6= j where ’int’ denotes the interior of a set.

Step 3. Add the subintervals{Ai} toL.
Step 4. Discard certain elements fromL that cannot contain a global minimizer.
Step 5. Choose a newA ∈ L and delete it from the list,L := L \ {A}.
Step 6. While termination criteria do not hold setk := k + 1 and go to Step 2.
Step 7. Stop.

Several details of this algorithm have been given in the joint paper [3], here we
discuss the interval subdivision direction selection in detail.

1.1. THE SUBDIVISION DIRECTION SELECTION RULE

The selection of subdivision direction is one of the points where the efficiency of
the basic branch-and-bound algorithm for unconstrained global optimization can
be improved substantially [5, 14].

All the rules select a directionk with a merit function:

k := min

{
j | j ∈ {1,2, . . . , n} andD(j) = n

max
i=1

D(i)

}
where the functionD(i) is determined by the given rule. If many such optimalk

indices exist then the algorithm can, e.g., choose the smallest one, or it can select
an optimal direction randomly.

The first rule, Rule A, was the interval-width oriented rule. It chooses the co-
ordinate direction with

D(i) := w(Xi).
Rule B selects the coordinate direction, for which

D(i) := w(∇i(X))w(Xi),
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where∇i is thei-th component of the inclusion function of the gradient off (x).
Rule C can be formulated with

D(i) := w(∇i(X)(Xi −m(Xi))).
The fourth rule, Rule D is derivative-free like Rule A, and reflects the machine
representation of the inclusion functionF(X). It is again defined by

D(i) :=
{
w(Xi) if 0 ∈ Xi,
w(Xi)/migXi otherwise,

where migX is the mignitude of the intervalX: migX := minx∈X |x|.
The theoretical results [5, 14] on the subdivision direction selection rules can

be summarized as follows. All the four described rules ensure convergence in the
sense that lims→∞ F(Xs) = f ∗, the set of accumulation pointsA∗ of the current
box sequence is not empty, andA∗ contains only global minimizer points (where
Xs is the current box of the algorithm in the iteration cycle numbers). Rules A and
D allow convergence also in the sense of lims→∞w(Xs) = 0. For Rules B and C
this type of convergence is not always achieved, but for the related instances the
respective algorithm variants converge to such a positive width subinterval of the
search regionX that contains exclusively global minimizer points. The latter type
of result set is more valuable for the user than the ones obtained by optimization
procedures with Rules A and D.

The conclusions of the numerical tests [5, 14] were essentially the same for the
different implementations: the rules B, and C have similar, substantial efficiency
improvements against rules A and D, and these improvements were the greater the
more difficult the solved problem was. The average performance of Rule D was the
worst. Rule C was usually the best, closely followed by Rule B.

2. Numerical tests

The numerical tests were carried out on various platforms. First we implemented
the studied algorithm on a Pentium PC in C-XSC [10] and Borland C with the
help of the Numerical Toolbox for Verified Computing [6]. This limited memory
environment proved to be not suitable to solve hard problems. Next we have tried
an HP 9000-730 workstation of the Institute of Applied Mathematics of the Karls-
ruhe University, Germany together with the C-XSC – Toolbox environment. This
platform allowed satisfying results, yet the third computational environment was
substantially quicker. The results to be reported were obtained on a Pentium PC
(133 Mhz., 64 Mbyte RAM) equipped with Linux operation system, and the PRO-
FIL/BIAS routines [8] to provide the interval extensions. The standard time unit
(1000 evaluations of the non-interval Shekel-5 function) was 0.0125 second. Other
programming environments are also available as Fortran-90 [9] and PASCAL-XSC
[11].
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Several numerical tests were completed to find the most efficient algorithm on
which the effects of multisection were investigated. These tests lead us to the inter-
val selection rule that chooses the subinterval with the minimal lower bound of the
inclusion functions for further subdivision. The inclusion functions were calculated
both by natural interval extension and by central forms. The intersection of these
inclusion function ensured good quality lower and upper bounds. Although the first
and second derivatives were obtained by automatic differentiation, the inclusion
functions were calculated componentwise and in this way some of the components
could be skipped if the monotonicity test showed that the objective function was
strictly monotonic in a variable.

From the point of view of the numerical efficiency, it is crucial under which
condition the interval Newton steps are started. Newton steps are useful only when
the boundary of the given subinterval does not contain a global minimizer. If the
interval Newton step is carried out unconditionally in each iteration cycle, then it
requires for many problems a large amount of additional computation, that will not
be justified by the achieved sharper result intervals. This is the reason why some
algorithms (e.g. those in [1, 13]) start an interval Newton step only ifw(F(Y )) and
w(Y )were sufficiently small for the current subintervalY . In our numerical experi-
ences the interval Newton step was started only in those iterations, when one single
subinterval remained after the other tests. Although one may expect that if the less
expensive acceleration devices were so effective that all but one subintervals were
deleted, then there is no reason to start the interval Newton procedure, this starting
condition proved to characterize very well those cases when the interval Newton
step could improve the efficiency of the whole algorithm.

The working listL was implemented as a dynamical list, and the list opera-
tions were made by pointers. It was ordered with increasing lower bounds on the
inclusion function. When for a current subinterval selected for further subdivision
the width of the inclusion function was smaller than a preset parameterε, it was
moved to a final list containing result intervals. These subintervals were processed
further by a few interval Newton steps. This additional algorithm step could im-
prove the width of the result intervals typically by many orders of magnitude. With
a few exceptions, for all test problems result intervals were achieved that contain
a single global minimizer, a stationary point inside the subinterval (proven by the
interval Newton step). The number of final boxes was limited to 100, since for
some problems the number of global minimizer points was very high, and thus the
processing of the final list could take large portions of the total CPU time necessary
— although only the first few result intervals were really useful.

The algorithm was terminated when no interval remained in the working list
L. This stopping criterion is substantially stronger than the earlier one [5] that
required only that the mentioned relation holds for one interval. This alteration
resulted in a better quality result from the user’s point of view. The termination
condition parameterε was set to 0.01 in each test.
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We have tested numerically the multisplitting technique which was investigated
by theoretical tools in the earlier joint paper [3], yet fors = 3 and 4 multisection,
where the second subdivision direction is also used proved to be even better. It
is the reason why the subsequent numerical study used multisection. Fors = 2
multisplitting and multisection are obviously the same method.

Summarizing the algorithmic changes, the tested procedure was a sophistic-
ated one, equipped with several new features providing tight inclusions of global
minimizer points and global minimum values. The studied multisection algorithm
variations improved the efficiency of such state of the art techniques. In this way
the presented decrease in the necessary CPU times and in the number of object-
ive function and derivative evaluations are net improvements, fully additional to
previous ones.

2.1. NUMERICAL TEST RESULTS

The numerical tests involved the set of standard global optimization problems
(definitions e.g. in [14], further numerical results in [2, 4, 13]) and the set of test
problems studied in Hansen’s book (descriptions in [7], additional test results in
[2, 13]): Shekel-5, 7, 10; Hartman-3, 6; Goldstein-Prize, Six-Hump-Camel-Back,
Branin RCOS, Rosenbrock/2, Rosenbrock/5, Three-Hump-Camel-Back, Levy-3,
5, 8-16, 18; Schwefel-2.1 = Beale, 3.1, 3.1p, 2.5 = Booth, 2.18 = Matyas, 3.2,
3.7/5, 3.7/10; Ex-1, Griewank-5, 7; Ratz-4, 5, 6. It is mostly the same set of test
problems that was used in [5], yet some of the old problems were omitted (e.g.
since they were not twice differentiable everywhere) and some other hard to solve
ones were added according to later experience as in [14].

All the test problems were solved, yet for a few of them the final interval Newton
steps could not prove that one of the result intervals contains a single global minim-
izer point. The sharpness of the result intervals and the related inclusion functions
were much better that in an earlier study [5]. Each test problem was solved 12
times, by the different algorithm variants: we have tested the A – D interval subdi-
vision direction selection rules and the multisection parameterss = 2, 3 and 4. In
the subsequent tables only comprised average or sum values are shown, since all
single data of the completed comprehensive numerical study would be too lengthy
to present.

Table (I) contains the values of three efficiency indicators: the total CPU time
necessary in seconds, the average list length MLL, and the sum of function eval-
uations NFE solving the 37 test problems. The AoP columns give the average of
the percentages of the compared efficiency figures on single test problems. The
average of the percentages figures reflect the relative computational burden one
can expect on a single problem if the given algorithm variant is used instead of
A/2, according to the statistical information provided by the set of test problems.
Each of the efficiency indicators is also represented in the columns denoted by
/(A/2) as the relative value compared to that obtained by the A/2 algorithm variant.
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Table I. The total CPU time necessary in seconds, the average maximal list length used, and the sum
of function evaluations solving the 37 test problems. Each of the efficiency indicators CPU, MLL
and NFE is also represented in the columns denoted by /(A/2) as the relative value compared to that
obtained by the A/2 algorithm variant. The AoP columns give the average of the percentages of the
compared efficiency figures on single test problems.

CPU MLL NFE

Rule AoP Sum /(A/2) AoP Av. /(A/2) AoP Sum /(A/2)

/2 4,180 228 502,360

A /3 101% 4,134 99% 125% 276 121% 103% 411,439 82%

/4 110% 5,613 134% 147% 360 158% 113% 434,574 87%

/2 82% 675 16% 89% 71 31% 83% 131,822 26%

B /3 84% 551 13% 104% 78 34% 86% 107,046 21%

/4 100% 562 13% 130% 92 40% 104% 105,306 21%

/2 81% 666 16% 88% 71 31% 82% 132,395 26%

C /3 80% 518 12% 103% 73 32% 84% 102,674 20%

/4 97% 521 12% 128% 84 37% 101% 98,950 20%

/2 136% 5,369 128% 142% 299 131% 129% 664,474 132%

D /3 112% 8,830 211% 141% 409 179% 112% 741,433 146%

/4 110% 12,871 308% 148% 579 254% 111% 801,293 160%

In this way the columns /(A/2) reflect the relative improvements to be achieved
if we use a given algorithm variant compared to the A/2 procedure solving a set
of problems that is similar to the present test problem set. Thus the /(A/2) figures
represent better the efficiency improvements achieved on hard to solve problems.

The overall performance of an algorithm variant is represented by the neces-
sary CPU time. The sum of the single CPU times means a kind of weighting that
highlights results obtained for hard to solve problems. This value is in general
proportional to the number of objective function, gradient and Hessian evaluations.
The exceptions are the cases with high memory-complexity. All multisection vari-
ants of the algorithms that use the interval subdivision direction selection rules C
and B are better than the others. The figures of the bisection variants are similar to
earlier results obtained by simpler algorithms [5], thus the present study confirms
the generality of the advantages of rules C and B. According to the indicators Sum
and /(A/2) the multisection types = 3 is the best for rules A – C, while for rule D
the bisection yielded the shortest execution time. The two shortest CPU times were
those for algorithms C/3 and C/4, they cause about 88 percent of improvement
compared to the CPU time needed by the procedure A/2. It is worth to note that
multisection alone brought 22% additional relative improvement to that achieved
by rule C. According to the average of percentages values, the two best algorithm
variants were C/3 and C/2 with 80% and 81% relative performance, respectively.
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The large differences between the values in the AoP and /(A/2) columns are due
to the substantially different efficiency improvements on easy and hard to solve
problems. For real life problems the later factor is the more important.

The average MLL values of the maximal list lengths used characterize the
memory complexity of the given algorithm variant. These figures must be handled
with care, since these average values are not direct physical quantities. On the other
hand they indicate the minimal memory configuration necessary to solve all the test
problems. Again, some high memory complexity problems influence the pattern of
average MLL and /(A/2) values stronger than problems that can be solved with
small work arrays. A largers multisection parameter means (with one exception)
always slightly larger memory complexity for all of the AoP, av. and /(A/2) values.
This phenomenon is fully explained by the larger number of subintervals generated
in each iteration cycle. The MLL values in Table (I) for the bisection cases are about
half of the figures obtained for a simpler algorithm [5] due to the more effective
acceleration tests. All the memory complexity values are acceptable low, much
higher MLL figures would mean large additional computational burden due to the
related list handling.

In contrast to the necessary CPU times, the number of objective function, gradi-
ent and Hessian evaluations characterize the possible computational burden on
practical problems which are similar to the test problems, yet the respective func-
tion evaluations are more expensive. The sum of the numbers of objective function
evaluations (and also that of the gradients and Hessians) must be interpreted with
care because the complexities of the individual test problems are different. The sum
figures are completed well in this sense by the average of percentages (AoP) values.
The computational cost of a gradient and a Hessian evaluation can be higher than
that of an objective function depending on the dimension and on other test problem
characteristics.

The numbers of objective function evaluations follow basically the trends of
the CPU times, albeit with somewhat different proportions. Again the interval se-
lection rules C and B are the best choice, and according to the sum of function
evaluations multisection can decrease the computational cost substantially. In the
case of the algorithm variants C/2 and C/4 this improvement is more than 25%. The
smallest two values were those for C/4 and C/3 with relative improvements of 80%
against the basic algorithm A/2. Thus for problems which have high complexity
objective function and are similarly hard to solve as the test set,s = 4 multisec-
tion could provide about one fourth improvement in the computational costs. For
easier problems the multisection variants are not justified according to the average
of percentages (AoP) values for the number of function evaluations: multisection
means always larger AoP values, and this difference is the larger the greaters is.
Since easy to solve problems are less important from the point of view of algorithm
development, the conclusions for the hard to solve problems have priority for the
users.
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Table II. The sums of the necessary number of gradient and Hessian evaluations, and iterations. Each
of the efficiency indicators NGE, NHE and NIT is also represented in the columns denoted by /(A/2)
as the relative value compared to that obtained by the A/2 algorithm variant. The AoP columns give
the average of the percentages of the compared efficiency figures on single test problems.

NGE NHE NIT

Rule AoP Sum /(A/2) AoP Sum /(A/2) AoP Sum /(A/2)

/2 289,016 39,243 79,422

A /3 108% 254,050 88% 96% 24,809 63% 88% 57,964 73%

/4 123% 283,938 98% 86% 15,852 40% 88% 58,545 74%

/2 84% 76,234 26% 82% 10,185 26% 81% 19,151 24%

B /3 92% 66,296 23% 76% 7,071 18% 71% 13,511 17%

/4 114% 69,046 24% 75% 5,344 14% 80% 12,501 16%

/2 84% 76,794 27% 82% 10,500 27% 81% 19,053 24%

C /3 89% 63,629 22% 74% 6,860 17% 70% 12,863 16%

/4 110% 64,918 22% 70% 5,123 13% 78% 11,628 15%

/2 126% 373,084 129% 119% 44,789 114% 137% 112,829 142%

D /3 118% 440,675 152% 101% 41,943 107% 98% 104,188 131%

/4 121% 522,237 181% 78% 21,592 55% 87% 114,472 144%

Table (II) contains numerical results for the number of gradient (NGE), Hessian
(NHE) evaluations and the number of necessary iterations (NIT). The sums of the
NFE, NGE and NHE indicators are different since the monotonicity test or the
interval Newton step requiring inclusions of the gradient and the Hessian, respect-
ively, is carried out only if earlier, computationally less expensive tests were not
effective. The NGE and NHE sum values are remarkably stable proportions of the
respective NFE figures: NGE/NFE is between 56% and 65%, while NHE/NFE is
3% – 8%. These ratios confirm the results in Table 1 in [3], and they also support
our η-assumption (although the NHE/NFE ratio is influenced by other factors too
like interval Newton procedure starting condition). In contrast to the computational
test resulting in the data of Table 1 of [3], this time the sampling was not uniform,
it followed the path of the optimization in the search tree.

According to the number of gradient evaluations, the interval subdivision dir-
ection selection rules C and B are the best. The two smallest NGE values were
achieved by the algorithm variants C/3 and C/4. The relative advantage of thes = 3
multisection (C/3) compared to bisection (C/2) was more than 17%. The average of
percentages values for NGE shows that for simple to solve problems multisection
procedures are not better than bisection, regardless which direction selection rule
was applied.

The numbers of Hessian evaluations NHE follow different trends: although
in general again interval direction selection rules C and B are the most efficient,
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yet multisection improves efficiency in all the cases, even in terms of average of
percentages representing better the easy to solve test problems. According to the
NHE values, the most efficient versions are C/4 and B/4, and the improvement of
multisection (C/4) compared to bisection (C/2) is more than 51%. Although the
present numerical study investigated onlys = 2, 3 and 4 multisection variants, for
the number of Hessian evaluations largers values could be even better (c.f. [1, 2]).
For large dimensional problems the NHE figure is more important than NFE or
NGE, thus in such cases multisection with greaters parameter can be suggested.

The number of iterations has no direct effect on the computational effort, yet
on the basis of CPU, NFE, NGE, NHE and NIT we can estimate the overhead
costs. Also the number of iterations was the lowest for the interval subdivision
direction selection rules C and B. For these rules largers for multisection meant
lower number of iterations. The two algorithm variants with the lowest NIT val-
ues were C/4 and B/4, thus iteration related overhead costs can be decreased by
proper multisection. The AoP figures indicate the smallest NIT values fors = 3
multisection, i.e. easy to solve problems are solved in this respect the best by such
multisection.

3. Summary and conclusions

Summarizing the numerical experiences we can conclude that multisection is ad-
vantageous in solving hard to solve problems, and algorithm variants C/3 and C/4
are the most efficient according to the majority of indicators. Multisection means
usually slightly larger memory complexity. For simple to solve problems the tradi-
tional bisection is the best choice. The present study confirmed the results of earlier
numerical tests on the advantages of interval subdivision selection rules C and B.
The relative improvements to be expected when hard problems must be solved with
these versions are as high as 20–22% compared to the best bisection methods. For
critical problems these better efficiency values mean that multisection can enable
the validated location of the minimizer points. Thus the numerical results indicate
that multisection techniques are indispensable in solving hard global optimization
problems in a reliable way.
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